Different Features of the Regulatory T Cells in Gastrointestinal Tract Cancers and Disorders

Document Type : Review Article

Authors

Shiraz Institute for Cancer research, Shiraz University of Medical Sciences,Shiraz Iran.

Abstract

Introduction:Regulatory T cells (Treg) located in tissues have a critical role in controllinghomeostasis and immune responses also modulate non-immunological processes.The T cell receptor repertoires of non-lymphoid tissue Tregs are distinct from Tregs in lymphoid organs.Less information is available about various ways to change the program of transcription in tissue-resident subsets of Treg cellsfor adapting to very different fields. However, recent progress in our understanding of Treg cells that reside in two important sites, the gut and adipose tissue, may provide some clues. Gastrointestinal is the largest reservoir for tissue-resident Treg cells in the body. Adequate number and performance of intestinal Treg cells are essential for maintaining normal intestinal immune homeostasis.Regulatory T cells in the GI tract have shown conflicting features. Therefore, in this study, phenotypic and functional characteristics of Treg cells are discussed in normal conditions, chronic inflammatory bowel disease (IBD) and colorectal cancer (CRC), as well as Treg cell therapeutic strategies in the treatment of these diseases.

Highlights

Marziye Norozian (PubMed)(Google Scholar)

Abbas Ghaderi (PubMed)(Google Scholar)

 

Keywords


1. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nature immunology. 2005;6(4):353-60. Epub 2005/03/24.
2.    Danese S, Rutella S. The Janus face of CD4+CD25+ regulatory T cells in cancer and autoimmunity. Current medicinal chemistry. 2007;14(6):649-66. Epub 2007/03/10.
3.    Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. Nature immunology. 2010;11(12):1093-101. Epub 2010/10/19.
4.    Levings MK, Gregori S, Tresoldi E, Cazzaniga S, Bonini C, Roncarolo MG. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood. 2005;105(3):1162-9. Epub 2004/10/14.
5.    Weiner HL. Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunological reviews. 2001;182:207-14. Epub 2001/11/28.
6.    Peterson RA. Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicologic pathology. 2012;40(2):186-204. Epub 2012/01/10.
7.    Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007;110(8):2983-90. Epub 2007/07/24.
8.    Sojka DK, Huang YH, Fowell DJ. Mechanisms of regulatory T-cell suppression - a diverse arsenal for a moving target. Immunology. 2008;124(1):13-22. Epub 2008/03/19.
9.    Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annual review of immunology. 2012;30:733-58. Epub 2012/01/10.
10.  Lowther DE, Hafler DA. Regulatory T cells in the central nervous system. Immunological reviews. 2012;248(1):156-69. Epub 2012/06/26.
11.  Barnes MJ, Powrie F. Hybrid Treg cells: steel frames and plastic exteriors. Nature immunology. 2009;10(6):563-4. Epub 2009/05/19.
12.  Sawant DV, Vignali DA. Once a Treg, always a Treg? Immunological reviews. 2014;259(1):173-91. Epub 2014/04/10.
13.  Panduro M, Benoist C, Mathis D. Tissue Tregs. Annual review of immunology. 2016;34:609-33. Epub 2016/05/12.
14.  Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, et al. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature. 2013;497(7448):258-62. Epub 2013/04/30.
15.  Kuhn KA, Stappenbeck TS. Peripheral education of the immune system by the colonic microbiota. Seminars in immunology. 2013;25(5):364-9. Epub 2013/10/31.
16.  Ai TL, Solomon BD, Hsieh CS. T-cell selection and intestinal homeostasis. Immunological reviews. 2014;259(1):60-74. Epub 2014/04/10.
17.  Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500(7461):232-6. Epub 2013/07/12.
18.  Iweala OI, Nagler CR. Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunological reviews. 2006;213:82-100. Epub 2006/09/16.
19.  Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science (New York, NY). 2011;331(6015):337-41. Epub 2011/01/06.
20.  Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science (New York, NY). 2016;351(6275):858-63. Epub 2016/01/30.
21.  Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. Journal of immunology (Baltimore, Md : 1950). 2008;181(4):2277-84. Epub 2008/08/08.
22.  Hammerschmidt SI, Friedrichsen M, Boelter J, Lyszkiewicz M, Kremmer E, Pabst O, et al. Retinoic acid induces homing of protective T and B cells to the gut after subcutaneous immunization in mice. The Journal of clinical investigation. 2011;121(8):3051-61. Epub 2011/07/09.
23.  Kushwah R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell & bioscience. 2011;1(1):20. Epub 2011/06/30.
24.  Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA. Oral tolerance in the absence of naturally occurring Tregs. The Journal of clinical investigation. 2005;115(7):1923-33. Epub 2005/06/07.
25.  Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012;482(7385):395-9. Epub 2012/02/10.
26.  Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW, Santacruz N, et al. Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011;478(7368):250-4. Epub 2011/09/23.
27.  Haribhai D, Williams JB, Jia S, Nickerson D, Schmitt EG, Edwards B, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. 2011;35(1):109-22. Epub 2011/07/05.
28.  Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. Journal of immunology (Baltimore, Md : 1950). 2010;184(7):3433-41. Epub 2010/02/26.
29.  Gottschalk RA, Corse E, Allison JP. Expression of Helios in peripherally induced Foxp3+ regulatory T cells. Journal of immunology (Baltimore, Md : 1950). 2012;188(3):976-80. Epub 2011/12/27.
30.  Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK. Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. Journal of immunology (Baltimore, Md : 1950). 2013;190(5):2001-8. Epub 2013/01/30.
31.  Yadav M, Louvet C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. The Journal of experimental medicine. 2012;209(10):1713-22, S1-19. Epub 2012/09/12.
32.  Milpied P, Renand A, Bruneau J, Mendes-da-Cruz DA, Jacquelin S, Asnafi V, et al. Neuropilin-1 is not a marker of human Foxp3+ Treg. European journal of immunology. 2009;39(6):1466-71. Epub 2009/06/06.
33.  Kurashima Y, Goto Y, Kiyono H. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation. European journal of immunology. 2013;43(12):3108-15. Epub 2014/01/15.
34.  Farkas AM, Panea C, Goto Y, Nakato G, Galan-Diez M, Narushima S, et al. Induction of Th17 cells by segmented filamentous bacteria in the murine intestine. Journal of immunological methods. 2015;421:104-11. Epub 2015/04/11.
35.  Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(27):12204-9. Epub 2010/06/23.
36.  Narushima S, Sugiura Y, Oshima K, Atarashi K, Hattori M, Suematsu M, et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut microbes. 2014;5(3):333-9. Epub 2014/03/20.
37.  Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-5. Epub 2013/11/15.
38.  Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation. Immune network. 2014;14(6):277-88. Epub 2015/01/01.
39.  Veldhoen M, Ferreira C. Influence of nutrient-derived metabolites on lymphocyte immunity. Nature medicine. 2015;21(7):709-18. Epub 2015/06/30.
40.  Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World journal of gastroenterology. 2015;21(17):5191-209. Epub 2015/05/09.
41.  Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nature reviews Immunology. 2008;8(9):685-98. Epub 2009/01/28.
42.  Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. The Journal of experimental medicine. 2007;204(8):1765-74. Epub 2007/07/11.
43.  Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. The Journal of experimental medicine. 2007;204(8):1775-85. Epub 2007/07/11.
44.  Tokuyama H, Tokuyama Y. The regulatory effects of all-trans-retinoic acid on isotype switching: retinoic acid induces IgA switch rearrangement in cooperation with IL-5 and inhibits IgG1 switching. Cellular immunology. 1999;192(1):41-7. Epub 1999/03/06.
45.  Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science (New York, NY). 2007;317(5835):256-60. Epub 2007/06/16.
46.  Reifen R, Nur T, Ghebermeskel K, Zaiger G, Urizky R, Pines M. Vitamin A deficiency exacerbates inflammation in a rat model of colitis through activation of nuclear factor-kappaB and collagen formation. The Journal of nutrition. 2002;132(9):2743-7. Epub 2002/09/11.
47.  Mouli VP, Ananthakrishnan AN. Review article: vitamin D and inflammatory bowel diseases. Alimentary pharmacology & therapeutics. 2014;39(2):125-36. Epub 2013/11/19.
48.  Liu W, Chen Y, Golan MA, Annunziata ML, Du J, Dougherty U, et al. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. The Journal of clinical investigation. 2013;123(9):3983-96. Epub 2013/08/16.
49.  Ananthakrishnan AN, Khalili H, Higuchi LM, Bao Y, Korzenik JR, Giovannucci EL, et al. Higher predicted vitamin D status is associated with reduced risk of Crohn's disease. Gastroenterology. 2012;142(3):482-9. Epub 2011/12/14.
50.  Eloranta JJ, Wenger C, Mwinyi J, Hiller C, Gubler C, Vavricka SR, et al. Association of a common vitamin D-binding protein polymorphism with inflammatory bowel disease. Pharmacogenetics and genomics. 2011;21(9):559-64. Epub 2011/08/13.
51.  Harrison OJ, Powrie FM. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harbor perspectives in biology. 2013;5(7). Epub 2013/07/03.
52.  Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. The Journal of experimental medicine. 1999;190(7):995-1004. Epub 1999/10/06.
53.  Davidson NJ, Leach MW, Fort MM, Thompson-Snipes L, Kuhn R, Muller W, et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. The Journal of experimental medicine. 1996;184(1):241-51. Epub 1996/07/01.
54.  Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature immunology. 2009;10(11):1178-84. Epub 2009/09/29.
55.  Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. The Journal of experimental medicine. 2001;194(5):629-44. Epub 2001/09/06.
56.  Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. The Journal of experimental medicine. 1996;183(6):2669-74. Epub 1996/06/01.
57.  Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. Journal of immunology (Baltimore, Md : 1950). 2004;172(2):834-42. Epub 2004/01/07.
58.  Fan YG, Zhai JM, Wang W, Feng B, Yao GL, An YH, et al. IL-35 over-expression is associated with genesis of gastric cancer. Asian Pacific journal of cancer prevention : APJCP. 2015;16(7):2845-9. Epub 2015/04/10.
59.  Gu X, Tian T, Zhang B, Liu Y, Yuan C, Shao L, et al. Elevated plasma interleukin-35 levels predict poor prognosis in patients with non-small cell lung cancer. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(4):2651-6. Epub 2014/12/07.
60.  Zeng JC, Zhang Z, Li TY, Liang YF, Wang HM, Bao JJ, et al. Assessing the role of IL-35 in colorectal cancer progression and prognosis. International journal of clinical and experimental pathology. 2013;6(9):1806-16. Epub 2013/09/17.
61.  Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet (London, England). 2007;369(9573):1627-40. Epub 2007/05/15.
62.  Uhlig HH, Powrie F. Mouse models of intestinal inflammation as tools to understand the pathogenesis of inflammatory bowel disease. European journal of immunology. 2009;39(8):2021-6. Epub 2009/08/13.
63.  Ostanin DV, Bao J, Koboziev I, Gray L, Robinson-Jackson SA, Kosloski-Davidson M, et al. T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. American journal of physiology Gastrointestinal and liver physiology. 2009;296(2):G135-46. Epub 2008/11/27.
64.  Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. Journal of clinical immunology. 2010;30(1):80-9. Epub 2009/11/26.
65.  Holmen N, Lundgren A, Lundin S, Bergin AM, Rudin A, Sjovall H, et al. Functional CD4+CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflammatory bowel diseases. 2006;12(6):447-56. Epub 2006/06/16.
66.  Ueno A, Jijon H, Chan R, Ford K, Hirota C, Kaplan GG, et al. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflammatory bowel diseases. 2013;19(12):2522-34. Epub 2013/10/08.
67.  Veltkamp C, Anstaett M, Wahl K, Moller S, Gangl S, Bachmann O, et al. Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment. Gut. 2011;60(10):1345-53. Epub 2011/04/05.
68.  Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology. 2005;128(7):1868-78. Epub 2005/06/09.
69.  Kelsen J, Agnholt J, Hoffmann HJ, Romer JL, Hvas CL, Dahlerup JF. FoxP3(+)CD4(+)CD25(+) T cells with regulatory properties can be cultured from colonic mucosa of patients with Crohn's disease. Clinical and experimental immunology. 2005;141(3):549-57. Epub 2005/07/28.
70.  Saruta M, Yu QT, Fleshner PR, Mantel PY, Schmidt-Weber CB, Banham AH, et al. Characterization of FOXP3+CD4+ regulatory T cells in Crohn's disease. Clinical immunology (Orlando, Fla). 2007;125(3):281-90. Epub 2007/09/28.
71.  Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. The Journal of clinical investigation. 2001;108(4):601-9. Epub 2001/08/24.
72.  Okou DT, Mondal K, Faubion WA, Kobrynski LJ, Denson LA, Mulle JG, et al. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. Journal of pediatric gastroenterology and nutrition. 2014;58(5):561-8. Epub 2014/05/06.
73.  Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(5):2159-64. Epub 2010/01/19.
74.  Hovhannisyan Z, Treatman J, Littman DR, Mayer L. Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology. 2011;140(3):957-65. Epub 2010/12/15.
75.  Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, et al. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. Journal of immunology (Baltimore, Md : 1950). 2011;186(7):4388-95. Epub 2011/03/02.
76.  Biancheri P, Giuffrida P, Docena GH, MacDonald TT, Corazza GR, Di Sabatino A. The role of transforming growth factor (TGF)-beta in modulating the immune response and fibrogenesis in the gut. Cytokine & growth factor reviews. 2014;25(1):45-55. Epub 2013/12/18.
77.  Ciacci C, Lind SE, Podolsky DK. Transforming growth factor beta regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology. 1993;105(1):93-101. Epub 1993/07/01.
78.  Faria AM, Weiner HL. Oral tolerance and TGF-beta-producing cells. Inflammation & allergy drug targets. 2006;5(3):179-90. Epub 2006/08/22.
79.  Massague J, Chen YG. Controlling TGF-beta signaling. Genes & development. 2000;14(6):627-44. Epub 2000/03/25.
80.  Briones-Orta MA, Tecalco-Cruz AC, Sosa-Garrocho M, Caligaris C, Macias-Silva M. Inhibitory Smad7: emerging roles in health and disease. Current molecular pharmacology. 2011;4(2):141-53. Epub 2011/01/13.
81.  Zorzi F, Angelucci E, Sedda S, Pallone F, Monteleone G. Smad7 antisense oligonucleotide-based therapy for inflammatory bowel diseases. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2013;45(7):552-5. Epub 2013/01/05.
82.  Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58. Epub 2008/04/05.
83.  Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1(7):553-62. Epub 1994/10/01.
84.  Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science (New York, NY). 2000;289(5483):1352-5. Epub 2000/08/26.
85.  Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E, Redhu NS, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity. 2014;40(5):706-19. Epub 2014/05/06.
86.  Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S, Kim KW, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity. 2014;40(5):720-33. Epub 2014/05/06.
87.  Huber S, Gagliani N, Esplugues E, O'Connor W, Jr., Huber FJ, Chaudhry A, et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3(-) and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity. 2011;34(4):554-65. Epub 2011/04/23.
88.  Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity. 2011;34(4):566-78. Epub 2011/04/23.
89.  Sarrabayrouse G, Bossard C, Chauvin JM, Jarry A, Meurette G, Quevrain E, et al. CD4CD8alphaalpha lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS biology. 2014;12(4):e1001833. Epub 2014/04/10.
90.  Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566-9. Epub 2007/11/23.
91.  Dige A, Hvas CL, Deleuran B, Kelsen J, Bendix-Struve M, Dahlerup JF, et al. Adalimumab treatment in Crohn's disease does not induce early changes in regulatory T cells. Scandinavian journal of gastroenterology. 2011;46(10):1206-14. Epub 2011/07/29.
92.  Yokoyama Y, Fukunaga K, Fukuda Y, Tozawa K, Kamikozuru K, Ohnishi K, et al. Demonstration of low-regulatory CD25High+CD4+ and high-pro-inflammatory CD28-CD4+ T-Cell subsets in patients with ulcerative colitis: modified by selective granulocyte and monocyte adsorption apheresis. Digestive diseases and sciences. 2007;52(10):2725-31. Epub 2007/04/04.
93.  Boschetti G, Nancey S, Sardi F, Roblin X, Flourie B, Kaiserlian D. Therapy with anti-TNFalpha antibody enhances number and function of Foxp3(+) regulatory T cells in inflammatory bowel diseases. Inflammatory bowel diseases. 2011;17(1):160-70. Epub 2010/09/18.
94.  Di Sabatino A, Biancheri P, Piconese S, Rosado MM, Ardizzone S, Rovedatti L, et al. Peripheral regulatory T cells and serum transforming growth factor-beta: relationship with clinical response to infliximab in Crohn's disease. Inflammatory bowel diseases. 2010;16(11):1891-7. Epub 2010/09/18.
95.  Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. Journal of immunology (Baltimore, Md : 1950). 2003;170(8):3939-43. Epub 2003/04/12.
96.  Desreumaux P, Foussat A, Allez M, Beaugerie L, Hebuterne X, Bouhnik Y, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology. 2012;143(5):1207-17 e1-2. Epub 2012/08/14.
97.  Lindsey A. Torre, Freddie Bray, Rebecca L. Siegel, Jacques Ferlay, Joannie Lortet-Tieulent , Ahmedin Jema. Global Cancer Statistics, 2012. CA CANCER J CLIN 2015;65:87–108.
98.  Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods in molecular biology (Clifton, NJ). 2009;472:467-77. Epub 2008/12/25.
99.  Shen LS, Wang J, Shen DF, Yuan XL, Dong P, Li MX, et al. CD4(+)CD25(+)CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression. Clinical immunology (Orlando, Fla). 2009;131(1):109-18. Epub 2009/01/21.
100.Yuan XL, Chen L, Li MX, Dong P, Xue J, Wang J, et al. Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clinical immunology (Orlando, Fla). 2010;134(3):277-88. Epub 2009/11/11.
101.Enarsson K, Lundin BS, Johnsson E, Brezicka T, Quiding-Jarbrink M. CD4+ CD25high regulatory T cells reduce T cell transendothelial migration in cancer patients. European journal of immunology. 2007;37(1):282-91. Epub 2006/12/14.
102.Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9(12):4404-8. Epub 2003/10/14.
103.Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H, et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. International journal of cancer. 2008;122(10):2286-93. Epub 2008/01/29.
104.Bartchewsky W, Jr., Martini MR, Masiero M, Squassoni AC, Alvarez MC, Ladeira MS, et al. Effect of Helicobacter pylori infection on IL-8, IL-1beta and COX-2 expression in patients with chronic gastritis and gastric cancer. Scandinavian journal of gastroenterology. 2009;44(2):153-61. Epub 2008/11/06.
105.Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, et al. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer research. 2005;65(12):5211-20. Epub 2005/06/17.
106.Yaqub S, Henjum K, Mahic M, Jahnsen FL, Aandahl EM, Bjornbeth BA, et al. Regulatory T cells in colorectal cancer patients suppress anti-tumor immune activity in a COX-2 dependent manner. Cancer immunology, immunotherapy : CII. 2008;57(6):813-21. Epub 2007/10/27.
107.Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc'h N, Zeng G, et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. Journal of immunology (Baltimore, Md : 1950). 2005;175(3):1483-90. Epub 2005/07/22.
108.Shen Z, Zhou S, Wang Y, Li RL, Zhong C, Liang C, et al. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. Journal of cancer research and clinical oncology. 2010;136(10):1585-95. Epub 2010/03/12.
109.Won KY, Kim HS, Sung JY, Kim GY, Lee J, Park YK, et al. Tumoral FOXP3 has potential oncogenic function in conjunction with the p53 tumor suppressor protein and infiltrated Tregs in human breast carcinomas. Pathology, research and practice. 2013;209(12):767-73. Epub 2013/09/28.
110.Zuo T, Liu R, Zhang H, Chang X, Liu Y, Wang L, et al. FOXP3 is a novel transcriptional repressor for the breast cancer oncogene SKP2. The Journal of clinical investigation. 2007;117(12):3765-73. Epub 2007/11/17.
111.Tao H, Mimura Y, Aoe K, Kobayashi S, Yamamoto H, Matsuda E, et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung cancer (Amsterdam, Netherlands). 2012;75(1):95-101. Epub 2011/07/02.
112.Wang L, Liu R, Li W, Chen C, Katoh H, Chen GY, et al. Somatic single hits inactivate the X-linked tumor suppressor FOXP3 in the prostate. Cancer cell. 2009;16(4):336-46. Epub 2009/10/06.
113.Wang WH, Jiang CL, Yan W, Zhang YH, Yang JT, Zhang C, et al. FOXP3 expression and clinical characteristics of hepatocellular carcinoma. World journal of gastroenterology. 2010;16(43):5502-9. Epub 2010/11/19.
114.Yoshii M, Tanaka H, Ohira M, Muguruma K, Iwauchi T, Lee T, et al. Expression of Forkhead box P3 in tumour cells causes immunoregulatory function of signet ring cell carcinoma of the stomach. British journal of cancer. 2012;106(10):1668-74. Epub 2012/05/10.
115.Comerford I, Bunting M, Fenix K, Haylock-Jacobs S, Litchfield W, Harata-Lee Y, et al. An immune paradox: how can the same chemokine axis regulate both immune tolerance and activation?: CCR6/CCL20: a chemokine axis balancing immunological tolerance and inflammation in autoimmune disease. BioEssays : news and reviews in molecular, cellular and developmental biology. 2010;32(12):1067-76. Epub 2010/10/19.
116.Lee AY, Eri R, Lyons AB, Grimm MC, Korner H. CC Chemokine Ligand 20 and Its Cognate Receptor CCR6 in Mucosal T Cell Immunology and Inflammatory Bowel Disease: Odd Couple or Axis of Evil? Frontiers in immunology. 2013;4:194. Epub 2013/07/23.
117.Kaser A, Ludwiczek O, Holzmann S, Moschen AR, Weiss G, Enrich B, et al. Increased expression of CCL20 in human inflammatory bowel disease. Journal of clinical immunology. 2004;24(1):74-85. Epub 2004/03/05.
118.Kitamura K, Farber JM, Kelsall BL. CCR6 marks regulatory T cells as a colon-tropic, IL-10-producing phenotype. Journal of immunology (Baltimore, Md : 1950). 2010;185(6):3295-304. Epub 2010/08/20.
119.Luther J, Dave M, Higgins PD, Kao JY. Association between Helicobacter pylori infection and inflammatory bowel disease: a meta-analysis and systematic review of the literature. Inflammatory bowel diseases. 2010;16(6):1077-84. Epub 2009/09/18.
120.Sonnenberg A, Genta RM. Low prevalence of Helicobacter pylori infection among patients with inflammatory bowel disease. Alimentary pharmacology & therapeutics. 2012;35(4):469-76. Epub 2012/01/10.
121.Cook KW, Letley DP, Ingram RJ, Staples E, Skjoldmose H, Atherton JC, et al. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut. 2014;63(10):1550-9. Epub 2014/01/18.
122.Kelsen DP, Portenoy R, Thaler H, Tao Y, Brennan M. Pain as a predictor of outcome in patients with operable pancreatic carcinoma. Surgery. 1997;122(1):53-9. Epub 1997/07/01.
123.Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer research. 2007;67(19):9518-27. Epub 2007/10/03.
124.Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006;12(18):5423-34. Epub 2006/09/27.
125.Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. British journal of cancer. 2013;108(4):914-23. Epub 2013/02/07.
126.Vizio B, Novarino A, Giacobino A, Cristiano C, Prati A, Ciuffreda L, et al. Potential plasticity of T regulatory cells in pancreatic carcinoma in relation to disease progression and outcome. Experimental and therapeutic medicine. 2012;4(1):70-8. Epub 2012/10/13.
127.Yamamoto T, Yanagimoto H, Satoi S, Toyokawa H, Hirooka S, Yamaki S, et al. Circulating CD4+CD25+ regulatory T cells in patients with pancreatic cancer. Pancreas. 2012;41(3):409-15. Epub 2011/12/14.
128.Lunardi S, Jamieson NB, Lim SY, Griffiths KL, Carvalho-Gaspar M, Al-Assar O, et al. IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget. 2014;5(22):11064-80. Epub 2014/11/22.
129.Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer cell. 2014;25(6):719-34. Epub 2014/05/27.
130.Montalto G, Cervello M, Giannitrapani L, Dantona F, Terranova A, Castagnetta LA. Epidemiology, risk factors, and natural history of hepatocellular carcinoma. Annals of the New York Academy of Sciences. 2002;963:13-20. Epub 2002/07/04.
131.Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA CANCER J CLIN. 2005;55(2):74-108. Epub 2005/03/12.
132.Wang HY, Wang RF. Regulatory T cells and cancer. Current opinion in immunology. 2007;19(2):217-23. Epub 2007/02/20.
133.Zhou J, Ding T, Pan W, Zhu LY, Li L, Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. International journal of cancer. 2009;125(7):1640-8. Epub 2009/07/02.
134.Chen KJ, Lin SZ, Zhou L, Xie HY, Zhou WH, Taki-Eldin A, et al. Selective recruitment of regulatory T cell through CCR6-CCL20 in hepatocellular carcinoma fosters tumor progression and predicts poor prognosis. PloS one. 2011;6(9):e24671. Epub 2011/09/22.
135.Yang J, Zhang JX, Wang H, Wang GL, Hu QG, Zheng QC. Hepatocellular carcinoma and macrophage interaction induced tumor immunosuppression via Treg requires TLR4 signaling. World journal of gastroenterology. 2012;18(23):2938-47. Epub 2012/06/28.
136.Wang Y, Liu T, Tang W, Deng B, Chen Y, Zhu J, et al. Hepatocellular Carcinoma Cells Induce Regulatory T Cells and Lead to Poor Prognosis via Production of Transforming Growth Factor-beta1. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2016;38(1):306-18. Epub 2016/01/23.
137.Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(3):971-9. Epub 2009/02/04.
138.Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. International journal of cancer. 2011;128(4):887-96. Epub 2010/05/18.
139.Shirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, et al. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. International journal of clinical oncology. 2010;15(6):552-8. Epub 2010/10/22.
140.Cabrera R, Ararat M, Eksioglu EA, Cao M, Xu Y, Wasserfall C, et al. Influence of serum and soluble CD25 (sCD25) on regulatory and effector T-cell function in hepatocellular carcinoma. Scandinavian journal of immunology. 2010;72(4):293-301. Epub 2010/10/05.
141.Cao M, Cabrera R, Xu Y, Firpi R, Zhu H, Liu C, et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Laboratory investigation; a journal of technical methods and pathology. 2007;87(6):582-90. Epub 2007/03/21.
142.Chen L, Ma H, Hu H, Gao L, Wang X, Ma J, et al. Special role of Foxp3 for the specifically altered microRNAs in Regulatory T cells of HCC patients. BMC cancer. 2014;14:489. Epub 2014/07/09.
143.Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clinical colorectal cancer. 2016. Epub 2016/03/12.
144.Banham AH, Powrie FM, Suri-Payer E. FOXP3+ regulatory T cells: Current controversies and future perspectives. European journal of immunology. 2006;36(11):2832-6. Epub 2006/10/20.
145.Medina-Echeverz J, Fioravanti J, Zabala M, Ardaiz N, Prieto J, Berraondo P. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. Journal of immunology (Baltimore, Md : 1950). 2011;186(2):807-15. Epub 2010/12/15.
146.Betts G, Jones E, Junaid S, El-Shanawany T, Scurr M, Mizen P, et al. Suppression of tumour-specific CD4(+) T cells by regulatory T cells is associated with progression of human colorectal cancer. Gut. 2012;61(8):1163-71. Epub 2011/12/31.
147.Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, et al. Tumor-derived chemokine CCL5 enhances TGF-beta-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer research. 2012;72(5):1092-102. Epub 2012/01/28.
148.Bonertz A, Weitz J, Pietsch DH, Rahbari NN, Schlude C, Ge Y, et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. The Journal of clinical investigation. 2009;119(11):3311-21. Epub 2009/10/08.
149.Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R, et al. CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PloS one. 2006;1:e129. Epub 2007/01/06.
150.Sundstrom P, Stenstad H, Langenes V, Ahlmanner F, Theander L, Ndah TG, et al. Regulatory T Cells from Colon Cancer Patients Inhibit Effector T-cell Migration through an Adenosine-Dependent Mechanism. Cancer immunology research. 2016;4(3):183-93. Epub 2016/01/21.
151.Wang Q, Feng M, Yu T, Liu X, Zhang P. Intratumoral regulatory T cells are associated with suppression of colorectal carcinoma metastasis after resection through overcoming IL-17 producing T cells. Cellular immunology. 2014;287(2):100-5. Epub 2014/02/04.
152.Michel S, Benner A, Tariverdian M, Wentzensen N, Hoefler P, Pommerencke T, et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. British journal of cancer. 2008;99(11):1867-73. Epub 2008/11/06.
153.deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(11):3022-9. Epub 2012/04/19.
154.Zhang X, Kelaria S, Kerstetter J, Wang J. The functional and prognostic implications of regulatory T cells in colorectal carcinoma. Journal of gastrointestinal oncology. 2015;6(3):307-13. Epub 2015/06/02.
155.Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer research. 2013;73(2):539-49. Epub 2012/10/31.
156.Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F, et al. High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut. 2008;57(6):772-9. Epub 2007/10/30.
157.Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, et al. Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. Science translational medicine. 2012;4(164):164ra59. Epub 2012/12/18.
158.Keerthivasan S, Aghajani K, Dose M, Molinero L, Khan MW, Venkateswaran V, et al. beta-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Science translational medicine. 2014;6(225):225ra28. Epub 2014/02/28.
159.Shi J, Chi S, Xue J, Yang J, Li F, Liu X. Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases. Journal of immunology research. 2016;2016:9392132. Epub 2016/04/26.
160. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH. Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood. 1999;93(5):1634-42. Epub 1999/02/25.
161. Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by IL-10-treated dendritic cells. Journal of immunology (Baltimore, Md : 1950). 1997;159(10):4772-80. Epub 1997/11/20.
162. de Waal Malefyt R, Yssel H, de Vries JE. Direct effects of IL-10 on subsets of human CD4+ T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation. Journal of immunology (Baltimore, Md : 1950). 1993;150(11):4754-65. Epub 1993/06/01.
163. Emmerich J, Mumm JB, Chan IH, LaFace D, Truong H, McClanahan T, et al. IL-10 directly activates and expands tumor-resident CD8(+) T cells without de novo infiltration from secondary lymphoid organs. Cancer research. 2012;72(14):3570-81. Epub 2012/05/15.
164. Fujii S, Shimizu K, Shimizu T, Lotze MT. Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood. 2001;98(7):2143-51. Epub 2001/09/25.
165. Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer cell. 2011;20(6):781-96. Epub 2011/12/17.
166. Mumm JB, Oft M. Pegylated IL-10 induces cancer immunity: the surprising role of IL-10 as a potent inducer of IFN-gamma-mediated CD8(+) T cell cytotoxicity. BioEssays : news and reviews in molecular, cellular and developmental biology. 2013;35(7):623-31. Epub 2013/05/15.
167. Dennis KL, Wang Y, Blatner NR, Wang S, Saadalla A, Trudeau E, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer research. 2013;73(19):5905-13. Epub 2013/08/21.
168. Gounaris E, Tung CH, Restaino C, Maehr R, Kohler R, Joyce JA, et al. Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PloS one. 2008;3(8):e2916. Epub 2008/08/14.
169. Dennis KL, Blatner NR, Gounari F, Khazaie K. Current status of interleukin-10 and regulatory T-cells in cancer. Current opinion in oncology. 2013;25(6):637-45. Epub 2013/10/01.
170. O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C. Strategies for use of IL-10 or its antagonists in human disease. Immunological reviews. 2008;223:114-31. Epub 2008/07/11.
171. Ozbilge H, LeVea C, Chung AY, Li Q, Egilmez NK. Modulating gut immunity and neoplasia with oral cytokine adjuvants. Oncoimmunology. 2015;4(4):e1002724. Epub 2015/07/03.
172. ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends in biochemical sciences. 2004;29(5):265-73. Epub 2004/05/08.
173. Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell research. 2009;19(2):156-72. Epub 2009/01/21.
174. Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia (New York, NY). 2004;6(5):603-10. Epub 2004/11/19.
175. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell research. 2009;19(1):128-39. Epub 2008/12/31.
176. Massagué J. TGFβ in Cancer. Cell. 2008;134(2):215–30.
177. Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, et al. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nature genetics. 2007;39(11):1315-7. Epub 2007/10/16.
178. Pittman AM, Naranjo S, Webb E, Broderick P, Lips EH, van Wezel T, et al. The colorectal cancer risk at 18q21 is caused by a novel variant altering SMAD7 expression. Genome research. 2009;19(6):987-93. Epub 2009/04/28.
179. Rizzo A, De Mare V, Rocchi C, Stolfi C, Colantoni A, Neurath MF, et al. Smad7 induces plasticity in tumor-infiltrating Th17 cells and enables TNF-alpha-mediated killing of colorectal cancer cells. Carcinogenesis. 2014;35(7):1536-46. Epub 2014/02/01.
180. Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. Journal of immunology (Baltimore, Md : 1950). 2010;184(12):7144-53. Epub 2010/05/21.
181. Niedbala W, Wei XQ, Cai B, Hueber AJ, Leung BP, McInnes IB, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. European journal of immunology. 2007;37(11):3021-9. Epub 2007/09/18.
182. Jin P, Ren H, Sun W, Xin W, Zhang H, Hao J. Circulating IL-35 in pancreatic ductal adenocarcinoma patients. Human immunology. 2014;75(1):29-33. Epub 2013/10/15.
183. Wang Z, Liu JQ, Liu Z, Shen R, Zhang G, Xu J, et al. Tumor-derived IL-35 promotes tumor growth by enhancing myeloid cell accumulation and angiogenesis. Journal of immunology (Baltimore, Md : 1950). 2013;190(5):2415-23. Epub 2013/01/25.
184. Long J, Zhang X, Wen M, Kong Q, Lv Z, An Y, et al. IL-35 over-expression increases apoptosis sensitivity and suppresses cell growth in human cancer cells. Biochemical and biophysical research communications. 2013;430(1):364-9. Epub 2012/11/17.
185. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nature reviews Immunology. 2006;6(4):295-307. Epub 2006/03/25.
186. Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nature medicine. 2011;17(9):1094-100. Epub 2011/08/30.
187. Khazaie K, Bonertz A, Beckhove P. Current developments with peptide-based human tumor vaccines. Current opinion in oncology. 2009;21(6):524-30. Epub 2009/09/23.
188. Barbee MS, Ogunniyi A, Horvat TZ, Dang TO. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. The Annals of pharmacotherapy. 2015;49(8):907-37. Epub 2015/05/21.
189. Ralph C, Elkord E, Burt DJ, O'Dwyer JF, Austin EB, Stern PL, et al. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(5):1662-72. Epub 2010/02/25.
190. Wang J, Reiss KA, Khatri R, Jaffee E, Laheru D. Immune Therapy in GI Malignancies: A Review. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015;33(16):1745-53. Epub 2015/04/29.
191. Qing Y, Li Q, Ren T, Xia W, Peng Y, Liu GL, et al. Upregulation of PD-L1 and APE1 is associated with tumorigenesis and poor prognosis of gastric cancer. Drug design, development and therapy. 2015;9:901-9. Epub 2015/03/04.
192. Yuan J, Zhang J, Zhu Y, Li N, Tian T, Li Y, et al. Programmed death-ligand-1 expression in advanced gastric cancer detected with RNA in situ hybridization and its clinical significance. Oncotarget. 2016. Epub 2016/05/19.
193. Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer immunology research. 2014;2(5):393-8. Epub 2014/05/06.
194. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer research. 2013;73(24):7189-98. Epub 2013/11/02.
195. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3--potential mechanisms of action. Nature reviews Immunology. 2015;15(1):45-56. Epub 2014/12/24.
196. Baksh K, Weber J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Seminars in oncology. 2015;42(3):363-77. Epub 2015/05/13.
197. Turnis ME, Andrews LP, Vignali DA. Inhibitory receptors as targets for cancer immunotherapy. European journal of immunology. 2015;45(7):1892-905. Epub 2015/05/29.
198. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nature reviews Cancer. 2014;14(8):559-67. Epub 2014/07/06.
199. Rojas JJ, Sampath P, Hou W, Thorne SH. Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015;21(24):5543-51. Epub 2015/07/19.