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Background
Regulatory T cells are involved in the immune system that 

plays an important role in various cancers, autoimmune 

diseases and infectious diseases.(1, 2)These cells can be formed 

in the thymus followed by self antigen identification, in the gut 

followed by interaction with antigen-specific cell subsets or in 

vitro in response to cytokines such as TGF-β.Two main subsets 

of CD4+ regulatory T cells (Treg) include: thymus-derived 

naturalregulatory T cells (tTreg or nTreg) with suppression 

activities which are essential for establishing and maintaining 

immune homeostasis in steady state; induced Treg cells (iTreg) 

that arise from naive T cells followed by self antigen 

identification outside of the thymus, such as interleukin-10 (IL-

10)-secreting T regulatory type 1 (Tr1) cells that do not express 

Foxp3 and CD25 markers or at the very least,Th3 cells that 

secrete high level of TGF-β which they express CD25 and 

FOXP3 markers and IL-35-secreting iTr35cells that do not 

express FOXP3(3-5). 

Other lymphocyte subsets with regulatory function include: 

inducible CD8+, CD3+CD4−CD8−Treg,CD4+Vα14+ (NKTreg) 

and γδ T cells. FOXP3 is considered as a key transcription 

factor controlling evolution and function of T regulatory cell.(6) 

However, in human, expression of Foxp3 alone is not sufficient 

to identify Treg cells.Besides subsets of cells T CD4 + CD25hi, 

FOXP3 is expressed by some of T CD4 + cells with low levels 

of CD25 or without CD25.FOXP3 expression may be induced 

in human T cells that are without Treg function(7). 

Treg cells migrate to inflammatory site and draining lymph 

nodes during the immune response for suppressive action.These 

mechanisms include inhibitory cytokine production such as IL-

10, TGF-β and IL-35; inducing functional cell death by taking 

and completing the cytokines such as IL-2 or production of 

granzyme B, creating localized metabolic disorder in target 

cells; and ultimately inhibition of dendritic cell function(8). 

Immune responses in various tissues are affected by Treg 

FOXP3 + cells.For example, in the intestine, Treg cells have a 

key role in maintaining tissue homeostasis by inhibiting 

excessive activation of DC cells and effector T cells. Treg cells 

modulate the response to commensal microbes in the lamina 

propria tissue(9). Treg cells have been shown that similarly to 

autoimmunity in the central nervous system (CNS) can have 

beneficial effects by inhibiting (or shortening the bindings) 

inflammatory loop of T cells and APCs(10).Such a mechanism 

could have the opposite results in tumor that the Treg cells can 

inhibit the immune response against the tumor, preventing 

tumor clearance.Treg cells maintain a delicate balance in the 

course of infection; inhibition of immune response leads to the 

inability to pathogen clearance, while uncontrolled immune 

response results in tissue destruction by unwanted immune 

response.Under special circumstances, in FOXP3+ Tregs can 

occur loss of Foxp3 expression and suppression 

functions(11).The key causes of this loss of FOXP3 expression 

include inflammatory environments with high levels of 

cytokines that are involved in the induction of effector T cells, 

such as IL-6 and IFN-γ(12). 

Regulatory T cells in gastrointestinal (GI) 

Treg cells in addition to peripheral blood and secondary 

lymphoid tissues can also be found in non-lymphoid tissues 

such as the skin, lung, liver, intestine, adipose tissue and 

placenta in non-inflammatory conditions(13).Overall, the 

analysis of Treg cells in these tissues has shown the 

characteristics of programmed effector Treg cell along with 

other detection features such as specific combinations of 
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molecules implantation, transcription factors, mechanisms of 

immunoregulatory and TCR pool, indicating considerable 

expertise of Treg cells in these environments.Colonic Tregs are 

an unusual population, which has provoked some contradictory 

observations.TCRs expressed by colonic Treg cells show clear 

reactions against microbial antigens, which seems to be 

important triggers for proliferation and differentiation of these 

cells(14, 15).Accordingly, many studies have demonstrated a 

reduction in the frequency of colonic Treg cells in germ-free 

mice and colonization of GF miceby a group of clostridium 

bacteria leads to differentiation or proliferation of colonic Treg 

cells (16, 17). 

Treg induction in the intestinal mucosa: 

Abundant iTreg cells are in the intestine, but not in the 

secondary lymphoid tissues, and this reminds that iTreg cells 

evolve in response to intestinal antigens derived from 

commensal bacteria or food(18).Now, it is clear that the 

development of Treg cells outside the thymus occurs in the 

gut.In germ-free micehave been shown that in normal 

circumstances, the small intestinal iTreg cells are induced by 

food antigens and whereascolonic iTregs are induced by 

commensal bacteria (19, 20). 

Intestinal dendritic cells can induce antigen-specific Treg 

cells, which are mainly involved in controlling the immune 

response against the dietary antigens and commensal 

microbes.Retinoic acid (RA) is a major factor in the induction 

of Treg as well as homing tendency of activated cells in the 

mucosa; also RA is not able to induce alone the expression of 

FOXP3, but upregulate expression in combination with TGF-

β(21). RA, mediating orientation of Treg cells to the gut,is a 

strong induction for CCR9 and α4β7 expression(22). 

iTreg produced by CD103+ dendritic cells and stromal cells 

specific to the mesenteric lymph nodes have a key role in 

inducing and maintaining oral tolerance(23).Several subsets of 

Treg cells such as, CD4+ FOXP3+ iTreg cells, IL-10-producing 

Tr1 cells and TGF-β-producing Th3 cells have been shown in 

oral tolerance(24). 

Among subsets of Tregs, the role of FOXP3 Treg cells 

(nTregs and iTregs) in oral tolerance is the best studied. 

Inhibition of differentiation of iTreg by preventing the 

induction of TGF-β- dependent FOXP3 showed that iTreg cells 

are essential to inhibit the Th2 type diseases in mucosal sites 

(25). In addition, the lack of iTreg cells alters the composition 

of the intestinal microbiota. Therefore, this study suggests that 

tTreg cells are primarily responsible for the control of 

autoimmune response, whereas the main role of iTreg cells 

would be to prevent immune responses against commensal and 

dietary antigens. This idea is further supported by another study 

analyzing the TCR repertoire of colonic Treg cells.The 

comparison of the TCR repertoire of Tregs from this site with 

other locations revealed that gut antigens form the Treg TCR 

repertoire in the intestine(26). In fact, a large proportion of 

colonic Treg cells are specific for bacterial antigens, indicating 

that iTregs compose a major proportion of the gut Treg cells. 

However, another recent researchshowed that the TCR 

repertoires of intestinal and thymic Treg cells are highly 

similar, suggesting that tTreg cells also contribute significantly 

to the intestinal Treg pool(14). Therefore, both iTregs and tTreg 

cells are likely to contribute to the maintenance of intestinal 

homeostasis, and it remains to be cleared which population 

plays an important role.The cells of iTreg and nTreg have 

synergistic function because of having different TCR repertoire 

without redundancy(27). BothiTregs and nTregs express CD25 

and the key Treg lineage transcription factor, so the distinction 

between these two populations in the peripheral organs remains 

challenging. Now, Helios and Nrp-1 are two proposed markers 

for this discrimination. However, these markers are not 

adequate as diagnostic markers of Treg subsets. Transcription 

factor Helios has been shown to be expressed at higher level on 

tTreg cells that can detect them from iTregs(28).But, previous 

researches have demonstrated that Helios could also be 

expressed by iTreg cells in vivo (29). In addition, a part of 

human tTreg cells do not express Helios (30). Nrp-1 is 

expressed by tTreg cells and lack of its expression in iTreg cells 

gives distinctionbetween these two populations under non-

inflammatory conditions(31). However, the expression of Nrp-1 

may be induced in activatedeffector T cells in humans(32). 

Therefore, the lack of clear markers has caused to be limited 

our understanding of the relative contribution of tTreg and 

iTreg cells in pathology, especially in humans. 

Controlling the intestinal regulatory T-cells homeostasis by 

dietary antigens and commensal microbes 

The intestinal mucosa is constantly exposed to a various 

range of foreign antigens, such as dietary antigens, metabolites, 

and components of the commensal microbiota(33).  

The presence of distinct microbial species increases 

specialized host immune responses by differentiation of 

appropriate Tregand effector T cells. Colonization with 

segmented filamentous bacteria (SFB) leads to effector T cells 

accumulation within the small intestine, especially Th17, and to 

a lower degree Th1 cells (34). Also, populations of regulatory 

T-cell are affected by microbial colonization that can result in 

accumulation of FOXP3+ Treg cells populations and induction 

of IL-10 production.Experiments using germ-free mice have 

shown that commensal bacteria are essential for the evolution 

of normal colonic Treg cells. Studies indicated that Bacteroides 

fragilis and clostridia species are important for intestinal 

regulatory T-cells homeostasis(19, 35).The most recently,17 

clostridial species were identified in the human microbiota, 

whichinduce gut-homing and proliferation of Treg cells.In 

addition, it was found that these 17 species provide a relatively 

high level of short chain fatty acids (SCFAs) that are the 

products of bacterial decomposition from plant fiber(36).It was 

shown that the SCFA such as propionate, butyrate and acetate 

are able to restore the number of Treg cells in micetreated with 

antibiotics or germ-free mice and increase the number of these 

cells in specific pathogen-free mice(37).These effects are 

caused partly by SCFA receptors, free fatty acid receptor 2 ( 

known as GPR43), which is expressed at high levels by colonic 

Treg cells, but not in circulating Treg cells(38). 

Recent findings have shown that metabolic status of the host 

and multiple metabolites of nutrients can affect 

hemostasis.Vitamins are essential organic compounds that are 

synthesized in the body or obtained from dietary sources(39).A 

variety of immunological disorders can occur as a result of 

vitamin deficiency(40). Vitamin A as one of the most important 

factors can regulate the intestinal immune cell 

function(41).Vitamin A is metabolized to RA In the intestine, 

which has pleiotropic effects on intestinal immune cells and 

regulates lymphocyte homing to the gut, intestinal IgA 

production, development of specific DC subsets, and Foxp3+ 

Treg cell differentiation(42-44). The extent of intestinal 

immune cell functions affected by RA suggests that vitamin A 

metabolism is important for immune homeostasis. In fact, the 
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disruption of RA signaling leads to reduced intestinal Foxp3+ 

pTreg cell development in vivo(45), and vitamin A deficiency 

is associated with the induction of colitis(46).Also, vitamin D is 

a precursor for calcitriol (1, 25 dihydroxy-vitamin D), which 

maintains calcium and phosphate balance, regulates bone 

formation, and it has been proved to increase Treg cell 

differentiation and suppress immune responses(47). In the gut, 

vitamin D and vitamin D receptor signaling contributes to 

improve chronic colitis in mousemodels(48). In IBD, low level 

of vitamin D is reported that associated with higher severity of 

disease (49, 50). Therefore, vitamin A and D additivesmay have 

therapeutic effects inIBD diseaseviainduction of intestinal Treg 

cells. 

Treg function in the gut: 

It has been well demonstrated that Treg cells play 

animportant role in the regulation of intestinal immune 

responses to ensure the protection of host against pathogenic 

microorganisms and the lack of immune-related pathologies. In 

the lamina propria of the gut, Treg cells maintain intestinal 

homeostasis through negative regulation of effector T cells and 

play a pivotal role in intestinal inflammation suppression by 

production of IL-10 and TGF-β as well as increased expression 

of CTLA4(51). Earlier studies has highlighted an 

immunoregulatory role of IL-10 by showing that the use of 

antibodies against the receptor IL-10 or transfer of CD4+ T cells 

deficient in IL-10 to Rag1-/-mice caused acute colitis (52, 53). 

Subsequent studies by searching for the mechanism of IL-10 

regulatory activity in the transfer colitis model indicated that 

FOXP3+ cells deficient in the IL-10 receptor subunit β (IL-

10Rβ) unable to protect recipient mice from colitis and missed 

their ability to express FOXP3, showing that IL-10R signaling 

in regulatory cells is significanttomaintain of their 

function(54).The role of IL-10 in regulatory T cell function 

does not reject a role of TGF-β. The role of TGF-β in studies 

showing that protection from colitis by Treg cells when CD4+ 

CD25+ cells with defects in TGF-β into recipient mice were 

transplanted, did not occur and by the observation that systemic 

use of anti-TGF-β antibody blocked the ability of CD4+CD25+ 

T cells to attenuate colitis(55, 56). Also, TGF-β expressed on 

the surface of CD4+CD25+ T cells in relationship with LAP 

mediated CD4+CD25+ T cell suppression in vitro and 

CD4+LAP+, but not CD4+LAP−; T cells protected recipient 

mice from colitis(57).  

IL-35 is an immunoregulatory cytokine that is secreted 

together with IL-10, TGF-β by FOXP3 Treg cells; especially in 

the presence of effector T cells, IL-35 is produced in 

considerable level whereby effector T cell proliferation is 

suppressed. Overexpression of IL-35 has been linked with 

increased induction of GI cancers (58-60). These findings 

suggest that IL-35 plays a role in suppressing immunity against 

tumors. 

Treg in Chronic intestinal inflammation: IBD and GI 

tumors  

Tregs in IBD 

Inflammatory bowel disease (IBD) is chronic autoimmune 

disorder that can involve the small intestine or colon, and 

basically consists of two types of ulcerative colitis (UC) and 

Crohn's disease (CD). Colorectal cancer risk is increased in 

patients with IBD. It is believed that IBD arise from a complex 

interaction of environmental factors, genetic susceptibility, 

impaired epithelial defense barrier and lack ofregulation of 

intestinal immune system(61). Although the exact mechanism 

involved is not yet clear, in recent years significant progress has 

been achieved in understanding the immunopathogenesis of 

IBD, resulting in new therapeutic and targeted strategies. 

IBD mouse models that mimic features of human pathology 

have been helpful in better understanding and explaining the 

immunopathology of IBD. They show that chronic 

inflammation may be result in excessive inflammatory 

responses or defects in negative regulatory routes(62). In colitis 

models (T cell transfer model and IL-10 knockout model), role 

of Treg cells and related cytokines has been shown in IBD(63). 

Patients with IBD have reduced Treg cells in the peripheral 

blood compared to healthy individuals and increased in 

inflamed intestinal mucosa.Disease severity has a different 

effect on the number of Treg cells in peripheral blood and 

mucosa (64, 65), or these cells have less ability to suppress 

proliferation of autologous T cell (66). There aredocuments that 

Treg cells of peripheral blood and gut of IBD patients are more 

susceptible to apoptosis compared to non-inflamed colon 

tissues, and a decrease in Treg cell apoptosis along with an 

increase in the number of these cells and reduction in disease 

activity can be observed in patients treated by anti-TNF (67). It 

can be said that there is no complete evidence that Treg cells 

are functional or not.In many studies, based on in vitro 

suppression assays, Treg cells in patients with IBD had 

functional roles and it was shown that Treg cells in both 

peripheral blood (68) and mucosa of patients with Crohn's 

disease and ulcerative colitis (69, 70).The reason for the 

creation of a deleterious immune response, despite the presence 

of functional Treg cells in inflamed mucosa, can be effector T 

cells resistance to immunosuppressive effects of TGF-β. The 

upregulation of Smad7 (an inhibitor of TGF-β signalling) in the 

intestinal mucosa of IBD patients show resistance of cells to 

inhibition of Treg cells (71). 

However, other studies have reported different results, 

indicating that IBDs could be due to functional defects of Treg 

cells (66, 72). It is impossible to determine whether these 

defects are initially responsible for the disease development in 

those patients or is secondary to the excessive inflammation 

triggered by other mechanisms.In IBD patients study, deficient 

suppressive function of Treg due to mutation in the FOXP3 

gene has been reported in vitro(72), showing that a Treg defect 

may be a key cofactor for disease development.Although the 

genetic defect of Treg cells may not happen in most cases as an 

underlying cause of IBD, Treg deficiency associated with other 

genetic or environmental factors may be involved in the 

development or severity of the disease. 

Accorgingto the correlation between the gut commensalflora 

and Treg cells it seems that in IBDpatients treatment by 

specified commensal bacteria may help to  accurate dysbiosis 

and rectify the development of Treg cells along inflammation of 

the intestine(73). 

Increasing the number of peripheral blood T cells co-

expressing FOXP3 and IL-17 is observed in patients with CD 

and UC (66). These FOXP3+ IL-17+ T cells express the 

transcription factor RORγt, showing an intermediate 

phenotypebetween the Th17 and Treg subsets. In a study, 

FOXP3+ IL-17+ T cells have been detected in the mucosa of 

patients with CD, but not in UC (74), whereas another study 

reported their presence in patients with UC (75). Significant 

reduction in the ability of Treg cells in suppressing autologous 

T cell proliferation was associated with increased IL-17+ T cells 

among FOXP3+ Treg cells, while other studies have concluded 
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that mucosal FOXP3+ IL-17+ T cells have the suppressive 

ability in patients with UC. Interestingly, other studies 

examining the mucosal FOXP3+ IL-17+ T cells functional 

capacities showed that these cells increased production of 

inflammatory cytokines IL-6 and IL-1 by colonic tissue cultures 

in an IL-17-dependent pathway(75). Thus, the capacities of pro-

inflammatory by Treg cells simultaneously with the loss of their 

suppressive activity may be involved in the uncontrolled 

inflammation in vivo.An important point for understanding 

Treg function in IBD pathogenesis is the lack of reliable 

markers for identifying Tregs. The classical CD25 and Foxp3 

markers that are applied in many works could also be expressed 

by activated effector T cells. So to achieve certain results, 

review of the studies will be required to identify Treg using a 

more refined phenotype.  

The role of inhibitory cytokines in IBD 

TGF-β:TGF-β is a pleiotropic cytokine released by some 

different cells in the gut thathave a significant tolerogenic effect 

by promoting regulatory T cell differentiation(76). TGF-

βregulates epithelial cell migration and plays an important role 

in tissue remodeling in the gut(77). TGF-β1 is produced in large 

quantities in the gut(78).The active form of TGF-β binding to 

its receptor activates Smad2/3 proteins, which in the formation 

of a complex with Smad4 and its inclusion intothe nucleus acts 

as a transcription factor.Smad7 by competitive binding to the 

receptor for TGF-β inhibits the phosphorylation of Smad2/3 

induced by TGF-β1, which is considered as a negative regulator 

of the TGF-β signaling pathway(79).However, Smad7 can react 

with other intracellular proteins and control cellular function 

through TGF-β1 independent pathways(80).TGF-β1 is highly 

expressed in inflamed mucosa of patients with IBD, but it is 

unable to activate Smad-associated intracellular signaling and 

suppress inflammatory responses.It has been shown that IBD-

related inflammation is along with increased levels of 

Smad7(71). So that the silencing of the Smad7 by specific 

antisense oligonucleotide restores TGF-β1 functionand this 

inhibits inflammatory cytokine production, and improves colitis 

in mice(81). 

IL-10: IL-10 is an anti-inflammatory cytokine, which is 

produced by immune and non-immune cells. Secretion of IL-10 

is one of the key inhibitory mechanisms in Treg cellsfor 

creating tolerance to self and environmental antigens, 

particularly in the colon, lung and skin (82). The important role 

of IL-10 in intestinal homeostasis have been proved by the use 

of recombinant IL-10 or intestinal bacteria able to produce IL-

10 can moderate intestinal inflammation in mice(83, 84). In an 

IBD mouse model, IL-10 secretion by Treg cells and other cells 

controls the activation of proinflammatory macrophages (85, 

86).IL-10 can directly inhibit the Th1 and Th1 and Th17 

colitogenic T cells(87), and IL-10 signaling in Treg cells is 

interestingly essential for colitogenic Th17 control(88). 

Therefore, IL-10 has an important role for Treg activation and 

suppressive functions. 

G. Sarrabayrouse et al. in a recent study detected CD4CD8αα 

cells asnew subsets of FOXP3- T cells in the blood and human 

colonic lamina propriawhich have similar regulatory functions 

to FOXP3+ T cells and secrete IL-10.F. prausnitzii bacterium 

from species of Clostridium of the gut microbiota is the main 

inducers of Treg cells and, interestingly, the study also showed 

thatthe bacteria levels were lower in patients with IBD 

compared to healthy colon mucosa of patients with colon 

cancer; and as a result, CD4CD8αα cells are reduced in the gut 

and the blood of these patients (89). 

IL-35: IL-35 is vital for Treg-mediated control of the 

inflammatory responses in the gut. In fact, in the T cell transfer 

model of colitis, mice receiving Treg cells from animals 

deficient in a subunit of the IL-35 receptor were less protected 

than those transferred with wild-type Treg cells (90). It has 

been suggested that IL-35 exerts its regulatory effects by 

inducing the conversion of conventional T cells to induced Treg 

cells. Indeed, CD4+ T cell activationby IL-35 and TCR signals 

creates stable iTreg population(3). 

Treg cells as a therapeutic tool in the treatment of IBD 

In IBD disease, some therapies which were not designed to 

specifically target Treg cells exert beneficial effects on the 

disease and a simultaneous impact on Treg cells (91, 92). For 

example, therapeutic response to anti-TNF resulted in a 

reduction Treg apoptosis inUC, enhance treg suppression(67, 

93)and increase the levels of TGF-β and IL-10 in responder 

patients(94). Treg cells transfer can treat intestinal pathology of 

mice(95), and this raisedthe use of Treg cells as a therapeutic 

method for IBD disease. Currently, administration of Treg 

cellshas been used in patients with Crohn’s disease in phase I 

and IIa clinical trial. A reduction of CD disease activity was 

observed in 40% of the patients (96).Encouraging results of this 

study has led to the development of a larger, ongoing, placebo-

controlled clinical trial to assess the effects of Treg cell therapy 

in patients with Crohn’s disease who are resistant to 

conventional treatments.In order to more effective Treg cells 

infused in controlling inflammation in patients with IBD, 

considering the purity of the cells Treg, the ability of homing, 

antigenic specificity and survival of Treg cells is likely to be 

strong to develop therapeutic regime. 

Treg in gastrointestinal tumors 

Treg cells in gastric cancer (GC): 

Gastric cancer is the third most common cause of cancer-

related mortality in the world (97). Unhealthy diet, smoking and 

above all infection with the bacterium Helicobacter pylori are 

the main risk factors for Gastric cancer (98). Treg cells play 

important roles in tumor escape in gastric cancer (99, 100). In 

the study of patients with gastric cancer, increasing the number 

of Treg cells has been shown in tumor tissue and peripheral 

blood(101, 102). The reason for the increased Treg cells into 

tumor is not only an increase in called Treg cells, but is also 

induction of FOXP3 expression in tumor site by tumor factors 

(103). For example, in patients with gastric,colon and lung 

cancers, one of the mechanisms that induce expression of 

FOXP3, expression levels of cyclooxygenase 2 (COX-2) by 

tumor cells has been shown to be mediated production of 

prostaglandin E2 (PGE2)(104-106).CD4+ CD25+ T cells treated 

with PGE2 lead to FOXP3 expression and induction of 

suppressive function of these cells (107).About the prognostic 

effect of Treg cells in gastric cancer, several studies have 

reported conflicting results; some studies have shown that Treg 

cells are protective, whereas in some other studies, Treg cells in 

TIL or in the peripheral blood of patients with GC are able to 

suppress effector T cells because of promoting tumor growth 

(102, 108). Several studies have shown that FOXP3 is 

expressed in varianttumor cells(100, 109, 110). But the function 

of FOXP3, in tumor cells is diverse and controversial. Several 

studies represent that the FOXP3 gene functions as both a 

tumor suppressor gene for breast, prostate and non-small cell 
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lung cancer and an oncogenic gene for gastric cancer and 

hepatocellular carcinoma (111-114). 

Moreover, recent data show that Th17 cells might somehow 

contribute to GC pathogenesis.One gets the impression Th17 

cells and Treg balance is important in determining the severity 

of gastritis caused by H. pylori.Both Th17 and Treg cells 

localize to mucosal surfaces through CCL20 signaling, CCL20-

CCR6 axis iscurrently the subject of several studies in patients 

with IBD (115, 116).Increased expressions of CCL20 in the 

mucosa of IBD patients and protection from CCR6+ Treg cell-

mediated colitis have been shown in the studies (117, 118). 

There is growing evidence that H. pylori infection is negatively 

associated with IBD (119, 120). Cook KW et al., reported that 

enhanced Treg cells in peripheral blood express C CR6, and 

increased expression of Ligand CCR6 (CCL20) in gastric 

epithelial cells of patients with H. pylori infection(121). 

Treg cells in pancreatic cancer (PC): 

Pancreatic cancer is a devastating form of cancer with a poor 

prognosis and 5-year survival rate of less than 5%, and most 

patients develop symptoms of pancreatic cancer in an advanced 

phase of the disease (122).In animal models, infiltration of Treg 

cells into pancreatic tumor tissue has been shown even in the 

early stages of tumor progression and creation of localized 

immunosuppression (123). Immunohistochemical studies have 

shown the presence of FOXP3+ Treg cells in pancreatic tumor 

tissue and their relationship with poor clinical prognosis. 

Several studies have examined the frequency of Treg cells in 

peripheral blood of patients with pancreatic cancer (124-

127).Some studies reported increased CD4+CD25+ Treg cells, 

and some other demonstrated no change in 

CD4+CD25+FOXP3+ Treg cells in the blood of patients with 

cancer than in healthy controls (127), it seems that this 

inconsistency in results can be attributed to the defined Treg 

cells. 

More recently, studies have been done on the biology of 

pancreatic adenocarcinoma and importance of tumor 

microenvironment in responding to treatment.In fact, one of the 

histologic features of pancreatic cancer is the dominant 

desmoplastic reaction, which in addition to pancreatic cancer 

cells (PCCs), pancreatic stellate cells (PSCs) are present in it.A 

study shows deleterious effects of PSC cells, which promote 

immunosuppression in tumor environment through the 

production of chemokine IP-10, and recruitment of CXCR3+ 

Treg cells (128); whereas, another study indicates that the PSC 

fibrosis can inhibit calling Treg cells into pancreatic tumor 

environment (129). However, in order to find an appropriate 

treatment strategy to improve the treatment of patients with 

pancreatic cancer, more clinical and basic researches are 

required to clarify the interaction between the immune system 

and PSC cells in these patients. 

Treg cells in hepatocellular carcinoma (HCC): 

Primary liver cancers include cholangiocarcinomas, 

hepatoblastomas and hepatocellular carcinomas, which the last 

type is the most common cancer with a high mortality rate and 

poor prognosis (130, 131).Evidence suggests that Treg cells are 

essential factors in the development and prognosis of HCC(132, 

133).The available evidence shows that the HCC tumor cells 

can directly alter the liver microenvironment by Treg cells 

recruitment (134, 135), or induce Treg cells through TGF-β1 

production (136) or up regulation the PD-1 (137), which have 

been associated with poor patient outcome and recurrence after 

surgery (138, 139).Increased repressive function and also 

abnormal functional phenotypes of Treg cells have been 

reported in patients with HCC. Treg cells in peripheral blood of 

HCC patients up-regulate CCR6 receptor, which facilitates their 

migration into the tumor sites (134, 140, 141). 

In a study on animal models and patients with HCC, it was 

found that the Treg cells in HCC had the specifically altered 

expression of miRNAs affected by FOXP3, which would target 

important signaling pathways that could affect the functions of 

Tregs(142). 

Treg cells in CRC cancer: 

Tumorigenesis in the colon is a complex and multi-step 

process, which is affected by external and internal factors, such 

as age, sex, diet, and other lifestyle-related diseases.The disease 

first appears as an adenomatous polyp, and then resulting in 

advanced adenoma with severe dysplasia, and eventually leads 

to invasive cancer. The immune system status in tumor 

microenvironment is involved on survival of patients with 

CRC(143).The failure to an effective immune response is 

thought to be because the tumor microenvironment dominated 

by immunosuppressive cells and in the meantime Treg cells 

have attracted special attention because of their ability to inhibit 

effector T cells, and increase the number of Treg cells enables 

tumor cells to evade the host immune response(144, 145).  

For CRC patients, high number of Treg cells had been 

indicated in peripheral blood, tumor-draining lymph node, and 

tumor site (146, 147). On the other hand, since in patients with 

CRC, carcinoembryonic antigen (CEA), telomerase, HER2/neu, 

and MUC-1 reactive Treg cells were detected, these Treg cells 

are specific TAA reactive. Indeed, TAA-specific Treg cells 

predominantly are in the blood of CRC patients, but are not 

dectectable in healthy subjects (148).  

FOXP3+ Treg cells suppress tumor antigen-specific immune 

responses in CRC, which may explain ineffective immune 

response against the tumor (149). Results of a study show that 

Treg cells may impact on effector T cell trafficking into tumors. 

Treg-derived adenosine contributes to suppress transendothelial 

migration of effector T cells into tumors by reducing the ability 

of monocytes and ICAM to activate the endotheliumin tumor 

patients. This effect of Treg cells is specifically for cancer 

patients (150). 

Many studies indicate a various importance of Treg cells in 

CRC cancer. Aresearch showed that in CRC intratumoral Treg 

cells suppressed matrix metalloproteases in the presence of IL-

17, which were linked to decreased metastases (151). In another 

work, it was proved that in CRCs with highlevel of 

microsatellite instability (MSI-H), the density of FOXP3+ Treg 

cells infiltrating CRCs was significantly higher in parallel with 

enhanced number of CD8+ T cells and was along with good 

prognosis (152). Indeed, CRC models show that, at least in 

early-stages, CRCis along with prolonged pro-inflammatory 

damages resulting from GI bacteria, and Treg cells are tool in 

removing the local inflammation that this useful effect of Treg 

cells gets lost later by converting to a pathogenic 

phenotype(154).The prognostic effect of Treg in CRCs is 

controversial. A report indicated that increased peritumoral 

numbers of FOXP3+Treg cells are due to advanced-stage 

tumors and weaker overall survival (155). But, the improved 

survival by increasing the numbers of intratumoral FOXP3+ 

Treg cells has also been reported in CRC patients(146). 

Heterogeneous nature of human intestinal tumor 

microenvironment may be involved in these paradoxical roles 

of Treg cells (146, 156).Treg cells subset that develop in human 
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colorectal cancer differ in their ability to suppress inflammation 

in comparison to Treg cells which are abundant in healthy 

individuals. Blatner et al., in 2012reported a subset of Treg cells 

in human and mice modeling of colorectal cancer, which 

express FOXP3 and RORγt markers, and these cells have both 

pro-inflammatory and cell suppressive functions 

(157).Therefore, these findings suggest that Treg cells are 

usually very protective by suppressing inflammation in cancer, 

but changes of these cells to the cells expressing RORγt is 

deleterious. On the other hand, it has been shown that the 

activation of Wnt/β-catenin signaling pathway increases RORγt 

expression in these T cells (158, 159).Thus, the activation of 

Wnt signaling pathway in inflammation conditions can inhibit 

the function of Treg cells, which the lack of control in this 

process can lead to autoimmune responses and even cancer. 

The role of inhibitory cytokines in CRC 

IL10 is an immunosuppressive cytokine that is upregulated in 

cancer, and it has been attributed with a role in inhibiting tumor 

lysis and tumor rejection as well as according some studies has 

a protective role.The immunosuppressive function of IL10 can 

be related to its effects on antigen-presenting cells and T cells. 

IL10 downregulates expression of costimulatory molecules by 

dendritic cells and induces T-cell anergy in dealing with the 

antigen (160, 161).The inhibitory impacts of IL10 are not 

always consistent; for instance IL10 in mice suppresses the 

proliferation of CD4+ T cells but not necessarily expression of 

cytokines such as IFNg; or IL10 has various effects on CD8+ T 

cellsand unexpectedly activates and expands tumor-resident T 

cells(162, 163). Inhibitory and enhancing effects of IL-10 on T 

cells depend on the activation status of these cells.The timing of 

exposure to IL10 seems to be significant, so that inhibitory 

effects at antigen priming, and stimulatory at recall(164).Recent 

results show important role of IL10 in IFN-γ –dependent tumor 

lysis and cytotoxic T-cell differentiation (163, 165, 166).The 

anti-inflammatory features of IL10, especially in the colon, 

indicate that this cytokine can suppress some immune responses 

while enhancing others.  

In adenomatous polyps in the small intestine of 

APCΔ468mouse model, deficient in IL-10 exacerbate the polyps 

in the colon and vice versa reduced in the small intestine, 

suggesting different nature of inflammation in the small 

intestine and colon.Since polyps is inhibited in the colon but not 

in small intestine of germ-free mice or treated with antibiotics, 

this difference could be related to microbes (167, 168). 

IL-10 production by Treg cells is essential to control 

tumorigenesis in intestinal dysplasia derived from 

inflammation(169).Similarly, in murine model of IBD showed 

that recombinant IL-10 can improve symptoms (170).However, 

clinical results in patients with IBD have been disappointing 

due to dose-limiting systemic toxicity of cytokine. Recently 

study on the APCmin/+ mouse model of intestinal polyposis 

showed that oral administration of IL-10  by effects on IL-17-

producing CD4+Foxp3+RORγt+ pathogenic T-regulatory can 

suppress polyps and improve systemic pathologies and increase 

the lifespan of mice(171). 

TGF-β: TGF-β plays a dual role in human diseases with the 

influence of context. TGF-β can act as a tumor suppressor and 

oncogenes (172).Its tumor suppression functions, which are 

observed in the early stages of cancer and in normal cells, 

include inhibition of cell proliferation, induction of apoptosis 

and autophagy regulation. As tumors grow, they alter their 

response to TGF-β and this factor can be used as a strong 

promoter of cell motility, invasion, and metastasis as well as 

maintain tumor stem cell. Also, TGF-βinduces epithelial to 

mesenchymal transition (EMT) in aggressive and invasive 

tumors (173). Studies have shown that TGF-β can activate the 

Smad-independent pathways. TGF-β induces activation of Erk 

signaling in colorectal cancer and breast cancer cells to promote 

of adherens junctions and cell migration (174, 175). It has been 

widely proven that increased expression of TGF-β, mutations or 

loss of TGF-β receptors or Smad2/4 could lead to the 

development of colorectal, pancreatic, gastric and prostate 

tumors (176).Allelic variants of Smad7 (TGFβ signaling 

pathway inhibitor),characterized by reduced expression of 

Smad7, is associated with increased risk of colitis-associated 

colorectal cancer (177, 178). 

In a mouse model, inducing increased Smad7expression in T 

cells was shown to promote the number of cells CD4+ T-bet+ 

RORγt+ T cells infiltration of tumor, which these cells produce 

TNF-α and IFN-γ; in indeed, the plastic effects of Smad7 on T 

cells phenotype lead to protection against colon cancer (179). 

IL-35:Immunosuppressive and anti-inflammatory functions of 

IL-35suppress T CD4 and T CD8 proliferation, as well as 

inhibit the TH17 function and cell differentiation into TH17 

(3).Also, IL-35 possesses the ability to inhibit antibody 

response and plays a role in infectious tolerance (180, 181). 

Generally, IL-35 expression has been considered by 

suppressing immune system associated with tumor progression 

and poor prognosis(59, 182, 183). In a study, increased 

expression of IL-35 in colorectal tumor cells and its relationship 

with tumor metastasis and clinical stages of the disease have 

been reported (60).However, conflicting results have been 

reported, for example, ectopic expression of IL-35 is said to 

suppress cell growth in cancer cells through G1 phase cell cycle 

arrest with increased apoptosis (184).. But the exact impact of 

IL-35 is still not entirely clear on tumorigenesis, especially in 

the development and metastasis of colorectal cancer.  

Treg cells as a therapeutic tool in the treatment of CRC 

Treg cell-mediated immune suppression is one of the main 

barriers to succeeded tumor immunotherapy(185).Treg cells 

may be an attractive therapeutic target. Depletion of Tregs by 

cytotoxic drugs and Treg modulation in patients with CRC 

might raise antitumor immune immunotherapy (186).In 

addition, the study showed that depletion of Treg cells in the 

peripheral blood of patients with CRC enhances CD4+ T cell 

responses to TAA antigens (148).However, currently losses or 

profits of increased Treg cells are more controversial in CRC. 

Since there are differences between Treg cells and Effector T 

cells in the repertoires of TAA antigens recognized by these 

cells, selected sets of TAAs can be used for tumor vaccinations 

that induce optimal effector T-cell responses but at least Treg 

activity without the need for remove of Treg cells (187). 

One of the new therapeutic approaches for cancer treatment is 

the immune checkpoint inhibitors.Preliminary studies suggest 

that the immune checkpoint inhibitors, especially anti-CTLA4, 

anti-PD-1 and anti-PD-L1 may be effective in the treatment of 

patients with GI cancer(188-190). In advanced gastric and 

colonic cancer, different clinical trials using antibodies to 

CTLA4, PD-1 and PD-L1 alone or in combination are currently 

ongoing. Primary findings wereelevated immune response by 

these drugs, while CTLA4 antibodies can increase T cells 

activated through APC cells in the lymphoid tissues, regulation 

of signaling pathways associated with PD-1 can lead to more 

effective function of effector T cells by interfering with tumor-
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associated immune suppression (188, 191, 192).Other immune 

checkpoints such as OX40, TIM 3 and LAG 3 are also in 

progress in early clinical trials(193-195). Therefore, 

combination therapies taking into account immune checkpoint 

inhibitors combined with other therapies such as chemotherapy, 

radiotherapy, etc. are suitable alternative treatment options, 

which are currently in early stages of development (196, 

197).The combination of oncolytic virus with immune 

checkpoint inhibitors can increase the treatment efficiency of 

these inhibitors through induction of tumor infiltration (198, 

199).  

 

Concluding remarks 

Regulatory T cells are a key factor in suppressing 

inflammation and maintaining immune tolerance,escaping 

tumor immune and reversing adoptive immunotherapy in 

cancer patients.The immunosuppressive function of Treg cells 

is especially important in the intestine where its mucosa is 

exposed to a variety of foreign antigens.Treg cell dysfunction is 

associated with a disruption in intestinal tolerance and 

imbalance of microbiota that may contribute to pathological 

inflammatory processes such as IBD and CRC diseases.Studies 

have reported Treg cells dysfunction in IBD patients and high 

densities of tumor-infiltrating Treg cells in CRC patients and its 

relationship with better or worse outcomes for disease. Detailed 

explanation is not clear for these inconsistent results. Treg cells 

phenotypic heterogeneity, gene expression andTreg cells 

functional activitiesmay have contributed to the somewhat 

contradictory results; it can be noted to other factors such 

asinsufficient markers or different techniques employed in 

researches to identify and monitor Treg cells, as well as 

microbial, nutritional and environmental agents associated with 

such diseases are important. 

According to a heterogenous population of regulatory T cells, 

identifying the subsets of Treg cells and their specific roles is 

critical to the discovery of pathologicalTregs, targeting them as 

opposed to systemic therapies and thus single cell analyses, 

such as single cell RNA-seq, may help to recognition these 

cells. 
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